wellcome_공부일기

2. Model and Cost Function - Model Representation 본문

컴퓨터 과학/머신러닝

2. Model and Cost Function - Model Representation

ma_heroine 2020. 6. 5. 17:04

* 해당 글은 coursera의 Machine Learning by Andrew Ng 강의를 토대로 작성되었습니다. 

2. Model and Cost Function - Model Representation

<목차>

1. 모델 구성(Model Representation) 살펴보기

- 주택 가격 예측

2. 데이터셋/학습셋의 표기법(dataset/training set notation)

3. 훈련집합을 통한 지도학습 알고리즘 과정

4. Summary

 

 

1. 모델 구성(Model Representation) 살펴보기

- Portland의 주택 가격 데이터로 집세를 예측

 

 

 

 

 

2. 데이터셋/학습셋의 표기법(dataset/training set notation)

 

 

 

3. 훈련집합을 통한 지도학습 알고리즘 과정

주택 가격과 같은 훈련집합을 통해 배우게 될 것은, 이 지도 학습 알고리즘이 어떻게 돌아가느냐에 대한 것 입니다. 

 

 

 

 

 

 

 

 

Model Representation

To establish notation for future use, we’ll use x^{(i)} to denote the “input” variables (living area in this example), also called input features, and y^{(i)} to denote the “output” or target variable that we are trying to predict (price). A pair (x^{(i)} , y^{(i)} ) is called a training example, and the dataset that we’ll be using to learn—a list of m training examples {(x^{(i)} , y^{(i)} ); i = 1, . . . , m}—is called a training set. Note that the superscript “(i)” in the notation is simply an index into the training set, and has nothing to do with exponentiation. We will also use X to denote the space of input values, and Y to denote the space of output values. In this example, X = Y = ℝ.

To describe the supervised learning problem slightly more formally, our goal is, given a training set, to learn a function h : X → Y so that h(x) is a “good” predictor for the corresponding value of y. For historical reasons, this function h is called a hypothesis. Seen pictorially, the process is therefore like this:

 

When the target variable that we’re trying to predict is continuous, such as in our housing example, we call the learning problem a regression problem. When y can take on only a small number of discrete values (such as if, given the living area, we wanted to predict if a dwelling is a house or an apartment, say), we call it a classification problem.

 

 

 

 

 

 

Comments