일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 학습 알고리즘
- 홍정모님
- 코드블럭 오류
- 코딩테스트
- standford University
- regression problem
- algorithm
- 본즈앤올
- 형변환
- 연산자
- 나동빈님
- 프로그래밍
- #endif
- Andrew Ng
- compile time constants
- coursera
- Machine Learning
- CLion
- 기계학습 기초
- decimal
- 단항연산자
- Greedy
- #define
- sizeof()
- classification problem
- 기계학습
- C++
- const
- 이코테
- Runtime constants
- Today
- Total
목록classification problem (2)
wellcome_공부일기
* 해당 글은 coursera의 Machine Learning by Andrew Ng 강의를 토대로 작성되었습니다. 2. Model and Cost Function - Model Representation 1. 모델 구성(Model Representation) 살펴보기 - 주택 가격 예측 2. 데이터셋/학습셋의 표기법(dataset/training set notation) 3. 훈련집합을 통한 지도학습 알고리즘 과정 4. Summary 1. 모델 구성(Model Representation) 살펴보기 - Portland의 주택 가격 데이터로 집세를 예측 데이터 모형이 일직선을 맞춰볼 수 있는데, 이 선에 근거해서 집을 220K에 팔 수 있다고 말해줄 수 있다. -> 지도 학습 알고리즘의 예시 이를 지도 학..
* 해당 글은 coursera의 Machine Learning by Andrew Ng 강의를 토대로 작성되었습니다. 1. Introduction - Supervised learning 1. Housing price prediction 문제 예시 - Supervised learning :: regression problem(회귀문제) 2. Breast cancer 문제 예시 - Supervised learning :: clasiffication problem(분류문제) 3. Supervised learning QUIZ 4. Summary 1. Housing price prediction 문제 예시 - 데이터를 수집한 것으로 데이터 집합을 위 표와 표현한 것을 도식화라고 함 - 가로 축에는 서로 다른 주택의..